


- آب بندى (توقف)




[^0]

## 



- عدم امكان آب بندى كامل در زمان ساخت
- نياز به روشى جهت زهكشى و كنترل آب


## 



- كاهش ورود آب زيرزمينى به محدوده كار
- استفاده از ديوار آببند
- كاهش نفوذپذيرى خاکى با روش هايى مثل تزريق


[^1]
\[

$$
\begin{aligned}
& \text { • با روش هايى تزريت }
\end{aligned}
$$
\]

[^2]

- پايین آوردن سطح آب زيرزمينى با پمپ كردن

$$
\begin{aligned}
& \text { • زهكشى از داخل گود } \\
& \text { • زهشیى از بيرون گود }
\end{aligned}
$$

سمينار آببندى گودهاى ساختمانى (Y (9Y)






$$
\begin{aligned}
& \text { • چاه نقطهای } \\
& \text { • سيستم چاه عميق } \\
& \text { • عالرى افقى }
\end{aligned}
$$

## 




سمينار آببندى گودهاى ساختمانى (MY Y MY)


(9f سمينار آببندى كودهاى ساختمانى (TY)



چحاه


یَالرى




[^3]
(94) سمينار آببندى كودهاى ساختمانى (TY)

 چاه هاى زهكشى هدايت شد و مهار گرديد.





> - • نشت آب در بالاى سطحم عمر بروز مشكلات آجرایی و و ناپرزمينىى

منشاء تراوش موضعى

سمينار آببندى گودهاى ساختمانى (MY M M M)



سمينار آببندى گودهاى ساختمانى (9Y Y (9)





سطح زمين

سطح آب زيرزمينى فوقانى

سطح عمومى آب زيرزمينى $\quad$ س


ريزش بخشى از قنات +•ا ساله تهران در حوالى
ميدان ونك



با مسدود كردن قنات در فرآيند جريان آب زيرزمينى اختلال ايجاد مىشود. اين كار قابل قبول نيست.

ترميم قنات ريزش كرده در



- زهكش كوتاه (سوراخهاى زهكش)
- نوارهاى زهكش
- زهكش عميق


سمينار آببندى گودهاى ساختمانى (9Y M M M)



سمينار آببندى گودهاى ساختمانى (9f (9 M)
DT


- هر دو گَزينه آب بندى و زهكشى در زمان بهره بردارى





[^4]




## Interior drainage system



- حتى در صورت زهكشى نياز به آب بندى نسبى داريمم


[^5]

## $\leftrightarrow$ زهكشى در زمان بهره بردارى






- زهكشى



- آببندى



- آببندى
- (بار ساختمان) > ${ }^{\text {( }}$ w $Z$

$$
\begin{aligned}
& \text { • احتياج به نيروى اضافى جهـت مقابله با نيروى بر كنش } \\
& \text { • افزايش وزن مرده } \\
& \text { • } \\
& \text { • شمع كششى }
\end{aligned}
$$

[^6]
دال وزنى بتنى در كف



```
M%)
```



سمينار آببندى گودهاى ساختمانى (9F STM)




- ضرورت تناسب عمق زيرزمين با تعداد طبقات در روش آب بندى
- مقابله با فشار بر كنش در زمان ساخت - نياز به استفاده از زهكشى در حين ساخت



[^7]

[^8]



هزينههاى بهرهبردارى بخصوص هزينه برق

- • انرزیى مورد نییی برای پمپپها
- $\mathrm{P}=\rho \mathrm{gQH} /(1000) \mathrm{n}$
- P: unit power capacity in kW
- $\rho$ : mass density of water in $\mathrm{kg} / \mathrm{m}^{\wedge} 3$
- g : acceleration due to gravity in $\mathrm{m} / \mathrm{s}^{\wedge} 2$
- Q: discharge in m^3/s
- H: effective head in m
- n: efficiency


هز ينههاى بهر هبر دارى بخصوص هزينه برق


- مثال: برق مورد نياز براى پروزهاى در شمال تهران
- $\mathrm{Q}=0.02 \mathrm{~m} \mathrm{~m}^{2} / \mathrm{s}$
- $\mathrm{H}=20 \mathrm{~m}$

$$
\begin{aligned}
& \text { دبى • } \\
& \text { عمق چاه • }
\end{aligned}
$$

- $\mathrm{n}=0.5$
- $\mathrm{P}=1000 \times 10 \times 0.02 \times 20 /[(1000) \times 0.5]=8(\mathrm{~kW})$ - با فرض روشن بودن پمپ در نيمى از شبانه روز
- ماه $=8 \times 30 \times 24 \times 0.5=2880(\mathrm{kWh})$
(

[^9]

- آببندى: اخلال در مسير حركت طبيعى آب هاى زيرزمينى

-     - زهـشی - هايين آوردن دائمى سطح آب آب


با تشكر


[^0]:    سمينار آببندى گودهاى ساختمانى (MY Y M (9)

[^1]:    

[^2]:    سمينار آببندى گودهاى ساختمانى (YY MY (Y)

[^3]:    سمينار آببندى كودهاى ساختمانى (94 JT)

[^4]:    

[^5]:    

[^6]:    سمينار آببندى گودهاى ساختمانى (9Y (9Y)

[^7]:    سمينار آببندى گودهاى ساختمانى (MY TM M)

[^8]:    

[^9]:    

